Progesterone initiates Wnt-beta-catenin signaling but estradiol is required for nuclear activation and synchronous proliferation of rat uterine stromal cells.

نویسندگان

  • Virginia Rider
  • Kazuto Isuzugawa
  • Meryl Twarog
  • Stacy Jones
  • Brent Cameron
  • Kazuhiko Imakawa
  • Jianwen Fang
چکیده

Progesterone pretreatment of ovariectomized rat uteri increases the number of synchronously proliferating stromal cells in response to estradiol 17-beta. To identify the signals involved in stimulating synchronous proliferation, sexually mature ovariectomized rats were injected with progesterone (2 mg) for 3 consecutive days. Estradiol 17-beta (0.2 microg) was administered to initiate cell cycle entry. Uterine samples were removed at various times after hormone administration and changes in wingless (Wnt) pathway effectors and gene targets were identified by microarray. Progesterone pretreatment decreased glycogen synthase kinase-3beta (GSK-3beta) and increased expression of T-cell factor/lymphoid enhancer factor (TCF/LEF). GSK-3beta protein decreased markedly in the uterine stroma of progesterone-pretreated uteri with the concomitant appearance of beta-catenin in these stromal cells. Translocation of beta-catenin from the cytosol to the nuclei in progesterone-pretreated stromal cells was stimulated in response to estradiol. Beta-catenin binding to TCF/LEF increased (P<0.05) in progesterone-pretreated uteri in response to estradiol. Progesterone stimulated the expression of the Wnt target gene urokinase plasminogen activator receptor (uPA-R) in the periluminal uterine stromal cells. The expression of uPA-R increased in progesterone-pretreated stromal cells in response to estradiol administration. Together, the results indicate that progesterone initiates Wnt signaling in the uterine stroma by down-regulating GSK-3beta. However, nuclear translocation of beta-catenin and sufficient complex formation with TCF/LEF to activate stromal cell cycle entry requires estradiol. Stimulation of a uterine stromal cell line to proliferate and differentiate resulted in beta-catenin accumulation, suggesting that endocrine-dependent Wnt signaling controls proliferation and differentiation (decidualization).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WINGLESS (WNT) signaling is a progesterone target for rat uterine stromal cell proliferation

Preparation of mammalian uterus for embryo implantation requires a precise sequence of cell proliferation. In rodent uterus, estradiol stimulates proliferation of epithelial cells. Progesterone operates as a molecular switch and redirects proliferation to the stroma by down-regulating glycogen synthase kinase-3β (GSK-3β) and stimulating β-catenin accumulation in the periluminal stromal cells. I...

متن کامل

P-58: Secreted Frizzeled Related Protein Type-4as an Inducer of Apoptosis and Terminal Differentiationof Rat Granulosa Cells

Background: Involvement of Wnt proteins and one of its antagonist known as secreted Frizzled Related Protein type-4 (sFPRP-4) was reported in rodent ovarian follicular development. Other studies showed an ap- Abstracts of the 11th Royan International Congress on Reproductive Biomedicine 7 7 International Journal of Fertility & Sterility (IJFS), Vol 4, Suppl 1, Summer 2010 optotic-associated exp...

متن کامل

The Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State

 Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...

متن کامل

Re-activation of Wnt/β-catenin Signaling Pathway in Hair Follicle Stem Cells in Treatment of Androgenetic Alopecia

Hair loss is a common hair disorder in human population. It affects quality of life and there are ongoing attempts to find permanent treatment for this condition. But, today there is no completely safe and protective treatment for all. Hair follicle stem cells are alive, but quiescence in androgenetic alopecia and are potentially active and can proliferate and differentiate, then regenerate hai...

متن کامل

Activation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells

Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of endocrinology

دوره 191 3  شماره 

صفحات  -

تاریخ انتشار 2006